Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. arch. biol. technol ; 63: e20180614, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132182

ABSTRACT

Abstract The organic compound caffeine when detected in environmental matrices such as surface waters and groundwater is considered as an emerging contaminant, in which its effects are still unknown. Therefore, in the present research, zinc oxide-based catalysts impregnated with iron and silver were prepared for the reaction of caffeine degradation by heterogeneous photocatalysis. The wet impregnation method with excess solvent was applied to the preparation of the materials, later they were characterized by adsorption of N2, X-ray diffraction and photoacoustic spectroscopy. Then, the photodegradation, photolysis and adsorption tests were carried out, in which it was observed that only the presence of the radiation or photocatalysts could not sufficiently degrade the caffeine, however when combined radiation with all the catalysts studied here presented degradation above 70% at the end of 300 minutes of the reaction, and the best catalyst studied was that containing 8% Ag in non-calcined ZnO. Thus, these results point out that the methodology employed in this research, both for the preparation of the catalysts and in the process of the photocatalysis reaction, was efficient in the degradation of the emerging contaminant, caffeine, which could later be used for a mixture of other contaminants.


Subject(s)
Silver/chemistry , Zinc Oxide/chemistry , Caffeine/chemistry , Catalysis , Photochemical Processes , Adsorption , Bioreactors , Iron/chemistry
2.
Braz. arch. biol. technol ; 63: e20180637, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132189

ABSTRACT

Abstract This study describes the use of bentonite in suspension for the caffeine adsorption (pollutant of emerging concern) by taking different conditions of the pH, adsorbent mass, adsorbent calcination temperature and interferents into account. The results were compared with those obtained using bentonite immobilized in alginate beads. The acid medium has a greater efficiency for the caffeine adsorption and the adsorbent calcination temperature exerts, due to structural changes. Caffeine removal higher than 90% was obtained at optimized conditions. The Langmuir model indicated a better fit of the data and the adsorption capacity of caffeine onto bentonite. The bentonite immobilized led to a slower adsorption process in relation to the suspended.


Subject(s)
Water Pollutants, Chemical/isolation & purification , Bentonite/chemistry , Caffeine/chemistry , Thermodynamics , Caffeine/adverse effects , Adsorption , Environmental Pollutants/isolation & purification , Hot Temperature , Hydrogen-Ion Concentration , Models, Theoretical
3.
Jordan Journal of Pharmaceutical Sciences. 2012; 5 (1): 21-29
in English | IMEMR | ID: emr-163081

ABSTRACT

The development and validation of an HPLC/UV/Fluorescence [FL] detection method is described, which enables the measurement of the most consumed pharmaceuticals [methotrexate, caffeine, diclofenac, glimepiride and ibuprofen] in Jordanian hospital effluents. Separation was done on a RP-C8 column at a flow rate of 1 ml/min using 1:1 H2O/acetonitrile with 0.1% trifluoroacetic acid. The samples [200 ml each] were extracted and cleaned-up on C18 cartridges. Correlation coefficients of the pharmaceuticals calibration were higher than 0.997 using a UV detector and 0.996 using a fluorescence detector for methotrexate. Recoveries were ranged from 87% to 108.3%


Subject(s)
Fluorescence , Ultraviolet Rays , Methotrexate/chemistry , Caffeine/chemistry , Diclofenac/chemistry , Ibuprofen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL